A model of high-frequency oscillatory potentials in retinal ganglion cells.

نویسندگان

  • Garrett T Kenyon
  • Bartlett Moore
  • Janelle Jeffs
  • Kate S Denning
  • Greg J Stephens
  • Bryan J Travis
  • John S George
  • James Theiler
  • David W Marshak
چکیده

High-frequency oscillatory potentials (HFOPs) have been recorded from ganglion cells in cat, rabbit, frog, and mudpuppy retina and in electroretinograms (ERGs) from humans and other primates. However, the origin of HFOPs is unknown. Based on patterns of tracer coupling, we hypothesized that HFOPs could be generated, in part, by negative feedback from axon-bearing amacrine cells excited via electrical synapses with neighboring ganglion cells. Computer simulations were used to determine whether such axon-mediated feedback was consistent with the experimentally observed properties of HFOPs. (1) Periodic signals are typically absent from ganglion cell PSTHs, in part because the phases of retinal HFOPs vary randomly over time and are only weakly stimulus locked. In the retinal model, this phase variability resulted from the nonlinear properties of axon-mediated feedback in combination with synaptic noise. (2) HFOPs increase as a function of stimulus size up to several times the receptive-field center diameter. In the model, axon-mediated feedback pooled signals over a large retinal area, producing HFOPs that were similarly size dependent. (3) HFOPs are stimulus specific. In the model, gap junctions between neighboring neurons caused contiguous regions to become phase locked, but did not synchronize separate regions. Model-generated HFOPs were consistent with the receptive-field center dynamics and spatial organization of cat alpha cells. HFOPs did not depend qualitatively on the exact value of any model parameter or on the numerical precision of the integration method. We conclude that HFOPs could be mediated, in part, by circuitry consistent with known retinal anatomy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maintained discharge of rat retinal ganglion cells.

Action potentials were recorded from rat retinal ganglion cell fibers in the presence of a uniform field, and the maintained discharge pattern was characterized. Spike trains recorded under ketaminexylazine. The majority of cells had multimodal interval distributions, with the first peak in the range of 25.00.97). Both ON and OFF cells show serial correlations between adjacent interspike interv...

متن کامل

Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method

This study used the Matching Pursuit (MP) method, a time-frequency analysis, to identify and characterize oscillatory potentials (OPs) in the primate electroretinogram (ERG). When the slow-sequence mfERG from the macular region of the retina was matched with Gabor functions, OPs were identified in two distinct bands: a high-frequency band peaking around 150 Hz that contributes to early OPs, and...

متن کامل

Stem ‍Cells in Glaucoma Management

Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...

متن کامل

Retinal ganglion cell response properties in the transcorneal electrically evoked response of the visual system

To identify the retinal origin of a cortical evoked potential elicited by transcorneal electrical stimulation of the visual system (EER), the response properties of retinal ganglion cells (RGCs) of cats to transcorneal electrical stimuli were studied. The discharge latency of RGCs to transcorneal stimulation had two peaks with a high temporal resolution. The latency of early components of the E...

متن کامل

Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation

Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Visual neuroscience

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2003